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The morphology and time-dependent integral properties of the multifluid compressible
flow resulting from the shock–bubble interaction in a gas environment are investigated
using a series of three-dimensional multifluid-Eulerian simulations. The bubble
consists of a spherical gas volume of radius 2.54 cm (128 grid points), which
is accelerated by a planar shock wave. Fourteen scenarios are considered: four
gas pairings, including Atwood numbers −0.8 <A< 0.7, and shock strengths 1.1 <

M � 5.0. The data are queried at closely spaced time intervals to obtain the time-
dependent volumetric compression, mean bubble fluid velocity, circulation and extent
of mixing in the shocked-bubble flow. Scaling arguments based on various properties
computed from one-dimensional gasdynamics are found to collapse the trends in these
quantities successfully for fixed A. However, complex changes in the shock-wave
refraction pattern introduce effects that do not scale across differing gas pairings,
and for some scenarios with A> 0.2, three-dimensional (non-axisymmetric) effects
become particularly significant in the total enstrophy at late times. A new model for
the total velocity circulation is proposed, also based on properties derived from one-
dimensional gasdynamics, which compares favourably with circulation data obtained
from calculations, relative to existing models. The action of nonlinear-acoustic effects
and primary and secondary vorticity production is depicted in sequenced visualizations
of the density and vorticity fields, which indicate the significance of both secondary
vorticity generation and turbulent effects, particularly for M > 2 and A> 0.2. Movies
are available with the online version of the paper.

1. Introduction
Since the publication of the work of Rudinger & Somers (1960) on the shock–

bubble interaction, it has been well-known that the interaction of a shock wave
with a density inhomogeneity gives rise to perturbations that are absent under
isentropic acceleration. These perturbations drastically alter the shape of both the
inhomogeneity and the shock wavefront, and result in the formation of characteristic
vortices and often of regions of intense mixing. In its simplest configuration – that of
a planar shock wave propagating in a medium which is uniform except for a single
spherical or cylindrical density inhomogeneity – this problem can be considered
a ‘building block’ to a larger class of problems: shock-accelerated inhomogeneous
flows, in which a shock wave propagates in a medium characterized by a distribution
of inhomogeneities in density, temperature, or other state variables. Such flows are
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encountered in systems at wide-ranging energy and spatial scales, including shock
propagation in the interstellar and intergalactic medium (see Klein, McKee & Colella
1994), sonic boom propagation (see Davy & Blackstock 1971), supersonic combustion
(see Yang, Kubota & Zukoski 1994), shock mitigation in foams (see Delale, Nas &
Tryggvason 2005), and shock-wave lithotripsy (see Jamaluddin, Ball & Leighton 2005).
Further, viewed as a density-interface perturbation whose deformation is driven by
an impulsive acceleration, the shock–bubble interaction has often been noted (see
Haas & Sturtevant 1987) as a finite-mass high-interface-curvature analogue to the
Richtmyer–Meshkov instability (see Richtmyer 1960; Meshkov 1970), which can arise
as a significant limitation to the efficiency of ablatively driven compression in inertial
confinement fusion implosions (see Lindl 1995).

1.1. Description of the shock–bubble interaction

The shock–bubble interaction is the unsteady flow that results from the passage
of a shock wave across a discrete round inhomogeneity in an otherwise uniform
medium. Here we consider the particular case of a planar incident shock wave and a
discrete (sharply defined) spherical gas bubble in a gaseous environment. The ambient
unshocked gas has density ρ1 and sound speed c1, and the unshocked bubble gas has
density ρ2 and sound speed c2. Defining an Atwood number A= (ρ2−ρ1)/(ρ2+ρ1), two
situations are possible: A< 0 (the ‘light-bubble’ case) and A> 0 (the ‘heavy-bubble’
case). Zabusky & Zeng (1998) have differentiated these in terms of the change in
the ideal-gas sound speed: for fixed uniform ratio of specific heats γ , A< 0 implies
c2 >c1, and A> 0 implies c2 <c1. Thus, they refer to the light-bubble case as the
‘slow-fast-slow’ or ‘SFS’ case, and the heavy-bubble case as ‘FSF’. The sign of A

determines the configuration of the shock refraction patterns that develop in shock–
bubble interactions. These patterns and the associated bubble deformation (figure 1)
can be described in general terms as follows.

In both cases, the incident shock wave is refracted while crossing the curved
upstream bubble surface, owing to the change in sound speeds. In light-bubble
scenarios (depicted in figure 1(a, b), refraction is divergent, so that the transmitted
shock wave has convex curvature. To maintain mechanical equilibrium at the interface,
an upstream-directed reflected rarefaction arises in the ambient gas. The transmitted
shock wave, in turn, generates an internally reflected shock wave at impact on
the downstream interior bubble surface, which transits the bubble in the upstream
direction. An irregular shock refraction pattern (see Henderson 1966, 1989) is formed
outside the bubble as the transmitted shock wave propagates downstream, ahead of
the exterior incident shock. This produces a Mach stem, triple point and precursor
shock. A slip surface may also be traced in the flow along the path travelled by
the triple point. Most importantly, vorticity is strongly deposited on the interface by
the baroclinic mechanism (see Haas & Sturtevant 1987; Jacobs 1993) during shock
transit, resulting in the inversion of the upstream portion of the interface and the
formation of a vortex ring.

In the heavy-bubble scenario (figure 1c, d), refraction is convergent, so that the
transmitted shock wave has concave curvature. In this case, mechanical equilibrium
is maintained after shock impact by the generation of an upstream-directed reflected
shock wave. The transmitted shock wave propagates across the bubble and generates
an internally reflected rarefaction wave at impact on the downstream interior bubble
surface. If the Atwood number (and thus the change in sound speeds) is high enough,
portions of the shock front sweeping around the bubble periphery are diffracted (see
Haas & Sturtevant 1987; Quirk & Karni 1996), meaning that they are turned toward
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Figure 1. Representative schematic view of shock–bubble interaction flow field. Light-bubble
(A < 0) scenario: (a) during initial shock wave transit, and (b) shortly after initial shock wave
transit. Heavy-bubble (A > 0) scenario: (c) during initial shock wave transit, and (d ) shortly
after initial shock wave transit. Incident shock wave propagation is left-to-right.

the axis so that the surface of discontinuity remains nearly normal to the interface.
These diffracted shock waves may then converge with the transmitted shock wave at
the downstream pole, resulting in shock focusing and the propagation of secondary
shock waves in the lateral and upstream directions. Vorticity is deposited baroclinically
on the interface during the transit of the primary and secondary shocks, resulting
in rotation primarily in an opposite sense to the light-bubble scenario. A supersonic
vortex ring of the type depicted in the simulations of Winkler et al. (1987) also
forms just behind the re-transmitted shock front in the ambient gas, and upstream-
or downstream-oriented perturbations may develop at the downstream pole of the
bubble.

It is important to note that the convergent or divergent nature of shock refraction
patterns is determined by the acoustic impedance (ρc) mismatch at the interface.
Hence, shock–bubble interactions will exhibit a divergent, ‘light-bubble’ refraction
pattern in the non-uniform-γ case for ρ2c2/(ρ1c1) < 1, even if A> 0, and vice versa.
It is therefore possible for externally reflected shock waves to appear in some cases
with A< 0, if the change in the ratio of specific heat γ offsets the change in density.
Conversely, externally reflected rarefaction waves may develop for A> 0. However,
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unusual cases such as these do not appear in the present study. For the scenarios
considered here, A< 0 (‘light-bubble’) implies ρ2c2/(ρ1c1) < 1 and divergent refraction,
and A> 0 (‘heavy-bubble’) implies ρ2c2/(ρ1c1) > 1 and convergent refraction.

1.2. Overview of theoretical treatment

In the literature, models have emerged for characterizing various aspects of this
flow. A useful approach is to represent the bubble as a simple slab of the bubble
gas, and use the well-known laws of one-dimensional gasdynamics (see Liepmann
& Roshko 1957) to compute the changes in state variables after one or more shock
reflection/transmission events at the slab surfaces. In this way, the effects of shock
refraction and vorticity generation may be isolated from first-order effects. Giordano
& Burtschell (2006) have used this approach to estimate the final total bubble volume,
from the bulk gas density computed after a number of shock reflection/transmission
events in the one-dimensional slab analogue.

In another useful type of approach, the total rotation introduced to the flow is
characterized by calculating the velocity circulation on a half-plane in the flow. The
most general approach of this type is the model of Samtaney & Zabusky (1994), which
is based on scaling arguments arising from shock-polar analysis and observations from
computational experiments analysing shock-wave interactions with planar interfaces.
Also, the models of Picone et al. (1985) and Yang et al. (1994) can be equally useful.
They are based on analytical approximations to baroclinic vorticity deposition. A
new model for the circulation is proposed here, which predicts the circulation using
line integrals in a reconstructed velocity field based on one-dimensional gasdynamics
and scaling arguments derived from computational experiments. As an alternative, a
simple formula based on normalized pressure differentials has been used successfully
by Lee, Peng & Zabusky (2006) to predict the time rate of change in the circulation
at intermediate times.

A third type of theoretical approach for shock–bubble interactions appearing in the
literature is the use of dimensional analysis to obtain time-scaling parameters. This
allows us to relate the rates of growth, acceleration, compression and other behaviour
under varying initial conditions to the dimensional parameters that define the flow, by
collapsing temporal trends for different scenarios on a single dimensionless time scale.
Such an approach has been applied successfully in the experimental work of Layes
(2005) and Ranjan et al. (2005), and in the numerical study of Klein et al. (1994).
Following the analysis appearing in these three studies, the radius of the bubble is
used as a characteristic length scale here, and time scales are constructed using the
ratio of the radius to various characteristic velocity scales.

1.3. Scope and plan for current numerical work

In the present study, the purpose is twofold. First, the extensive database of two-
dimensional simulations for the shock–bubble interaction (see Picone & Boris 1988;
Klein et al. 1994; Zabusky & Zeng 1998; Marquina & Mulet 2003; Giordano &
Burtschell 2006) is extended further, here, to three spatial dimensions. Such a study
has been recommended (see Winkler et al. 1987; Klein et al. 1994; Zabusky & Zeng
1998) particularly as a means of characterizing the response of the shocked-bubble
flow to fine-scale non-axisymmetric perturbations in the initial condition, and the
growth of turbulence-like features. Secondly, a unified set of simulations is generated,
which spans a significant portion of the parameter space of previous work on this
problem, in order to facilitate the evaluation and continued development of analytical
models and scaling laws for the integral properties of the shocked bubble flow field.
The scope of the study is limited to the case of a spherical gas bubble, with grid-scale
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Scenario Wi u′
1 Wt

number Gas pair M A χ (m s−1) (m s−1) (m s−1)

1 Air/He 1.20 −0.757 0.138 411.6 104.8 1112
2 1.50 514.5 238.3 1259
3 1.68 576.2 310.2 1344
4 3.00 1029 762.5 1958
5 N2/Ar 1.33 0.176 1.426 463.9 168.1 432.3
6 2.88 1005 736.5 981.2
7 3.38 1179 896.8 1159
8 Air/Kr 1.20 0.486 2.892 411.6 104.8 275.4
9 1.50 514.5 238.3 361.7

10 1.68 576.2 310.2 414.8
11 3.00 1029 762.5 811.4
12 Air/R12 1.14 0.613 4.173 391.0 75.15 182.4
13 2.50 857.5 600.5 499.3
14 5.00 1715 1373 1080

Table 1. Parameter study overview, including the incident shock Mach number M , the Atwood
number A and density ratio χ at the unshocked interface, and lab-frame speeds Wi , u′

1 and Wt

of the incident shock wave, shocked ambient gas and transmitted shock wave, respectively.

initial perturbations, and particular emphasis is placed on heavy-bubble scenarios,
for which a broader base of experimental data exists. Further, the study is limited to
thermodynamic environments that are accessible to mechanical shock tubes operating
with gas media initially at atmospheric conditions, thus, A � 0.8 and M � 5.

Fourteen scenarios, including four different gas pairings, are considered. An
overview of the parameter study scenarios is given in table 1, showing the Mach
number M of the incident shock wave, the Atwood number A and initial density
ratio χ = ρ2/ρ1 at the unshocked interface, and relevant velocities for each scenario,
computed from the laws of one-dimensional gasdynamics. Scenarios are selected to
coincide with previous experimental or computational work on this subject (see Layes,
Jourdan & Houas 2003, 2005, Layes 2005; Layes & LeMétayer 2007; Ranjan et al.
2005, 2007; Zabusky & Zeng 1998). Although this produces a non-uniform sampling
of the parameter space, the results may be referenced directly to previous work using
only spatial scaling arguments if necessary. The direct comparison of experimental
and numerical results, however, is beyond the scope of the present study, and will be
undertaken in future work.

2. Governing equations and numerical method
2.1. Euler equations

Governing equations are obtained by considering the unsteady compressible flow of
a single ideal fluid. If we neglect viscous effects (i.e restrict ourselves to short time
scales), the flow is described by the three-dimensional compressible Euler equations.
These can be formulated as a hyperbolic system of conservation laws which, in
three-dimensional Cartesian space, takes the form

∂U

∂t
+

∂F (U )

∂x
+

∂G(U )

∂y
+

∂H (U )

∂z
= 0, (2.1)
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where the conserved variables are U = (ρ, ρu, ρv, ρw, ρE)T , and the fluxes are

F (U ) =

⎛
⎜⎜⎜⎝

ρu

ρu2 + p

ρuv

ρuw

ρuE + up

⎞
⎟⎟⎟⎠ , G(U ) =

⎛
⎜⎜⎜⎝

ρv

ρvu

ρv2 + p

ρvw

ρvE + vp

⎞
⎟⎟⎟⎠ , H (U ) =

⎛
⎜⎜⎜⎝

ρw

ρwu

ρwv

ρw2 + p

ρwE + wp

⎞
⎟⎟⎟⎠ . (2.2)

In this system, t , x, y and z are the time and space coordinates, and u, v, w, ρ, p and
E represent the x-, y-, z-velocity, density, pressure and total energy per unit mass,
respectively. In the perfect-gas idealization, the system is closed by introducing an
explicit gamma-law equation of state,

p = (γ − 1)ρ
[
E − 1

2
(u2 + v2 + w2)

]
, (2.3)

where γ is the ratio of specific heats and appears as a fluid property.

2.2. Numerical method: Raptor

Our purpose in the current work is to explore the parameter space of the shock–bubble
interaction in three spatial dimensions. A second-order piecewise linear Eulerian
Godunov code with adaptive mesh refinement (AMR), named Raptor, is chosen
for this purpose, particularly for its excellent scalability. This code is based on the
single-fluid compressible hydrodynamics code using block-structured AMR which was
developed originally by the Center for Computational Sciences and Engineering at
Lawrence Berkeley National Laboratory, and is currently under development by AX-
Division at Lawrence Livermore National Laboratory. The scheme is a conservative
finite-difference method; hence, mass, momentum and energy are all conserved. It is
second-order accurate in space and time for smooth flow, and captures shock waves
with minimal numerical dissipation and overshoot. Further, application of the scheme
in simulations for shock-accelerated gas flows, e.g. by Henderson, Colella & Puckett
(1991), has resulted in very good agreement with experiments.

The code is implemented in a hybrid C++/Fortran framework, where the
infrastructure necessary for managing the AMR grid hierarchy and parallelization
are implemented in C++ and the numerical integration kernels are implemented in
Fortran, as described by Crutchfield & Welcome (1993). The current parallelization
strategy for data distribution and load balancing are described by Rendleman et al.
(1998), and the performance of the code on up to approximately 64 000 processors of
the IBM BlueGene/L machine is described by Greenough et al. (2005).

2.3. Adaptive mesh refinement

The integration kernel is embedded within the block-structured AMR framework of
Berger & Oliger (1984) in order to maximize resolution for fixed computational cost.
This framework breaks the domain into a number of three-dimensional rectangular
(‘block-structured’) grids, synchronizes the integration of (2.1) on each grid, and
maintains a nested hierarchy of higher-resolution subgrids whose distribution is
updated dynamically during the calculation to enhance spatial resolution and accuracy
in regions of interest. The AMR technique has been used extensively in shock
hydrodynamics computations (see Henderson et al. 1991; Klein et al. 1994), and its
implementation has been discussed in detail by Berger & Colella (1989) and Bell,
Colella & Trangenstein (1994).
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2.4. Eulerian Godunov method

To summarize the scheme as implemented for the current study, numerical integration
of the hyperbolic system (2.1) is accomplished using an operator-split second-order
Godunov method. The basic kernel is the piecewise linear method (PLM) of Colella
(1985), which is based on a higher-order extension of Godunov’s method first proposed
by van Leer (1979) – the MUSCL algorithm. In its one-dimensional form, cell-centred
cell-averaged initial data u(xi, tn) are interpolated using a piecewise-continuous linear
profile, to obtain cell-edge values at the half-time step, u(xi ± 1/2, tn+1/2). The profile
slope is determined by a fourth-order finite-difference approximation, with constraints
added to maintain monotonicity, which provides a profile that is steeper than that
obtained by a standard fourth-order approximation. The resulting left and right states
for the half-time step at each cell interface are then input to an approximate Riemann
solver.

The solver is based on the ideas given in Bell et al. (1989), whereby one considers
the cumulative effect of state changes across waves, and in Colella & Glaz (1985)
whereby, to second order, rarefaction waves can be approximated as shock waves.
The output from the Riemann solver, the so-called ‘Godunov state,’ is then used to
compute the fluxes. The solution at the next time step u(xi, tn+1) is then obtained
by explicit conservative differencing, with time-step size determined previously by the
CFL condition. (By adopting a recursive time advancement approach, the solution
is advanced on each AMR level using that level’s appropriate CFL number.) The
scheme is extended to two and three dimensions by Strang splitting (see Strang
1968), following the approach given by Bell et al. (1994), which yields second-order
accuracy after the complete permutation cycle. Symmetry preservation tests of the
three-dimensional integrator have been performed by running two-dimensional shock-
contact interaction problems that are uniform in the third dimension of the domain.
Results from x-y, y-z and x-z orientations are found to be identical to the level of
round-off error.

2.5. Multifluid capturing

The single-fluid algorithm is generalized to treat multiple species by adopting a
volume-of-fluid (VOF) multifluid approach following Miller & Puckett (1996), which
allows multiple fluids with distinct equations of state for each material. In its original
form, the VOF method tracks the material interface by performing a local interface
reconstruction. The multifluid capturing method used in this study solves the same
system of partial differential equations using the same numerical scheme as given in
the above two references, but foregoes the local interface reconstruction, in favour of
simple fluid volume advection (see Greenough et al. 1995). Mixed regions develop in
the vicinity of fluid interfaces, but since individual species densities and energies are
separately evolved, the mixing is not excessive when compared to other approaches
given in the following test problem section.

3. Two-dimensional test problems
To verify the accuracy of the current method, two test problems in two spatial

dimensions are simulated, which are drawn from well-known points of reference in
the literature: one problem studied by Quirk & Karni (1996) (hereinafter referred to
as QK), and the other by Zabusky & Zeng (1998) (hereinafter referred to as ZZ).
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Figure 2. Vorticity magnitude (top) and density gradient magnitude (bottom) in the
interaction of a M =1.22 shock wave with a cylindrical R22 bubble of radius 2.5 cm, after
Quirk & Karni (1996), simulated in two dimensions with Raptor at 446 grid points per bubble
radius. Shock wave propagation is left-to-right. Times relative to initial shock wave impact:
(a) 51 µs, (b) 142 µs, (c) 189 µs, (d ) 247 µs, (e) 341 µs, (f ) 412 µs.

3.1. Cylindrical R22 bubble, shocked at M = 1.22

In the first of these test problems, the shock–bubble interaction is considered for
a cylindrical bubble of initial radius R = 2.5 cm, containing refrigerant gas R22
(molar mass M = 91.4 g mol−1, ratio of specific heats γ = 1.249), accelerated by
a planar shock wave of strength M =1.22 in air, as studied experimentally by
Haas & Sturtevant (1987). QK integrated the Euler equations for this problem on
a two-dimensional Cartesian mesh using a ‘nearly conservative primitive-variable’
shock-capturing scheme within a two-level AMR implementation, at an effective grid
resolution of R446 (446 grid cells in a distance equal to R). The same initial and
boundary conditions, AMR set-up and fluid properties are set up here – except that
a smoothed initial bubble surface is created – and the Euler equations are integrated
using the Raptor scheme described in § 2. In this ‘smoothed’ set-up, a subgrid VOF
model (described in more detail in § 4.4) is used to smooth corners protruding from
the curved bubble surface.

Plots of the vorticity magnitude ω = |∇ × V | and the density gradient magnitude
|∇ρ| from these simulations are shown in figure 2, which can be compared to the
images shown in figure 7(a, c–e, g, h) of QK, and to the experimental shadowgraphs in
figure 11(a, c–e, g, h) of Haas & Sturtevant (1987). The flow visualizations in figure 2
demonstrate a qualitative level of agreement with the results of QK, for many of
the features highlighted in that work, including the ‘folding’ of the transmitted shock
wave seen in figure 2(b) (t =142 µs), and the two-pronged axial jet arising owing
to shock focusing, visible just right of centre in figure 2(d–f ). The wave patterns
associated with shock focusing and the convergence of diffracted and reflected shock
waves observed both in Haas and Sturtevant’s experiments and by QK at t =187 µs
and t = 247 µs are clearly resolved in the current simulations, as shown in figure 2(c, d).
Further, the behaviour of the total velocity circulation over time, computed as
Γ (t) =

∫
ω(x, y, t) dA, is shown in figure 3(a), and corresponds closely to the data
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Figure 3. Decomposed (a) circulation Γ and (b) area-integrated baroclinic torque B versus
time, for the interaction of an M = 1.22 shock wave with a cylindrical bubble of R22, with
bubble surfaces ‘unsmoothed’ and discontinuous (- - -), or ‘smoothed’ (—–) by use of a subgrid
VOF technique.

shown in figure 15(a) of QK, with a peak circulation of 6.1 m2 s−1 and a distinct drop
in total circulation after shock passage, near t = 188 µs.

However, QK have noted that the initial development of vortical features on the
surface of the bubble during shock passage has some grid-dependent properties. The
growth of such grid-dependent features in Eulerian simulations for shock-contact
initial-value problems has been characterized explicitly by Samtaney & Pullin (1996)
as a manifestation of the non-convergence of Euler simulations. The effect of these
features is particularly significant in the simulations described by QK, because of
the discontinuous nature of the initial bubble surface. That is, the interfacial layer
effectively has zero thickness, and the volume fraction f of the bubble-interior gas
is everywhere either zero or one in the initial condition. Corrugations are therefore
present on the surface, owing to the discretized projection of the curved interface onto
the rectangular grid. This discretization sets a cutoff wavelength for the development
of the Kelvin–Helmholtz roll-ups observed on the interface in figure 2, which results
in the non-convergence of simulations for this flow using different methods and grid
sizes. The ‘smoothed’ set-up has been introduced in order to minimize these effects,
while keeping the density gradient at the bubble boundary as large as possible.

The calculations shown in figure 2 are repeated with an ‘unsmoothed’ definition of
the initial bubble surface in which the subgrid smoothing in the initial condition is
removed. The resulting post-shock growth of the positive and negative components
of the circulation is enhanced up to roughly 10 % by t = 100 µs in the ‘unsmoothed’
case, relative to the ‘smoothed’ case, as shown in figure 3(a). The total circulation
is unchanged, however, indicating that this is a more appropriate quantity for
comparison between methods and initial data than the components of the circulation.
The additional rotation manifested in the components of the circulation appears
visibly as vortices on the interface in the ‘unsmoothed’ case, and is introduced by
the same baroclinic mechanism (noted by subscript b) that is responsible for the
large-scale vortical growth:

B(t) ≡
(

dΓ

dt

)
b

=

∫
1

ρ2
(∇ρ × ∇p) · dA. (3.1)
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Figure 4. Vorticity magnitude (top) and density (bottom) plots for the interaction of an
M =2.5 shock wave with a spherical R12 bubble of radius 1 cm (after Zabusky & Zeng 1998),
simulated with Raptor in two dimensions (r , z)-symmetry) with 55 grid points per bubble
radius. Shock wave propagation is left-to-right. Times relative to shock-wave impact: (a) 19 µs,
(b) 34 µs, (c) 45 µs, (d ) 60 µs, (e) 76 µs, (f ) 93 µs.

The total area-integrated baroclinic torque B(t), along with its positive and negative
components, is plotted against time in figure 3(b), showing that, although the net or
‘total’ values of B(t) are unchanged, the positive and negative components of B

are both enhanced by as much as 40% during shock passage over the bubble in
the ‘unsmoothed’ case, relative to the ‘smoothed’ case. (For example, at t = 65 µs, the
positive component of baroclinic torque for the ‘unsmoothed’ case is 0.72 × 105 m2 s−2,
while for the ‘smoothed’ case, it is only 0.46 × 105 m2 s−2.) Angular momentum added
by this additional local torque accumulates over time, resulting in the enhanced
magnitudes of the circulation components seen at late times in figure 3(a). The
additional local baroclinic torque due to corners on the initial interface can have either
sign, and thus adds nothing to the net integrated torque. However, the components of
the local torque are significantly enhanced, resulting in the development of spurious
vortices.

3.2. Spherical R12 bubble, shocked at M = 2.5

A second two-dimensional test problem for the shock–bubble interaction involves a
spherical bubble of refrigerant gas R12 (M = 120.9 g mol−1, γ =1.141) accelerated by
an M = 2.5 planar shock wave. This scenario was simulated in ZZ on a uniform two-
dimensional rectangular grid in (r , z)-symmetry about the direction of shock-wave
motion, at a spatial resolution of R55, using a second-order upwind TVD scheme.
The flow is simulated with Raptor, using the same boundary and initial conditions
and fluid properties as given by ZZ (including a ‘smoothed’ initial bubble surface),
except that the geometry is scaled to a bubble radius of R = 1 cm here. In figure 4,
the vorticity magnitude and density fields resulting from the Raptor simulation are
plotted, showing the generation of opposite-signed vorticity and the emergence of
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Figure 5. Integrated vortical behaviour for an M = 2.5, air–R12 shock–bubble interaction:
(a) space–time plot of the r-integrated vorticity 〈ω〉, after figure 16(a) of Zabusky & Zeng
(1998), and (b) decomposed circulation in the domain versus time. Opposite-signed vorticity
(black) begins to appear in (a) when the transmitted shock wave reflects from the downstream
bubble surface, resulting in the downturn in circulation seen in (b) after t = 34 µs.

secondary vortical features at late times, as seen in figure 13 of ZZ. In particular, at
t = 93 µs (figure 4f ), we note the formation of a distinct secondary vortex ring on the
upstream bubble surface, a small axial jet and vortex ring on the downstream surface
and regions of opposite-signed vorticity within the primary vortex ring, as observed
by ZZ. Very good qualitative agreement between the two methods is also evident, by
comparison to ZZ.

These phenomena are depicted clearly in the plot of r-integrated vorticity in
figure 5(a), in which figure 16(a) of ZZ is reproduced using the current results. The
radially averaged vorticity 〈ω〉 = (

∫ rmax

0
|ω|dr)/rmax is plotted on the (z, t)-coordinate

axes, with time progressing in the downward direction. The prominent white streak
represents primary (positive) vorticity generated during initial shock passage. Black
streaks appear amidst the white when the transmitted shock wave reaches z =R (where
the origin is at the bubble centre), owing to opposite-signed vorticity generated by
reflected shock waves originating at that time. A prominent black streak runs ahead
of the primary white structure, which represents the strong opposite-signed vorticity
associated with the Winkler-Group supersonic vortex ring (see Winkler et al. 1987)
trailing behind the shock wave after re-transmission into the ambient gas, first visible
in figure 4(c) and depicted schematically in figure 1(d ).

The circulation, integrated over the entire computational domain, and decomposed
into its positive and negative components, is plotted over time in figure 5(b), which
can be compared to figure 17(c) in ZZ. The total circulation has a peak at shock
passage near t =34 µs, followed by a very strong decrease to less than half the peak
value. This abrupt decrease is caused by the deposition of opposite-signed vorticity by
reflected shocks, and is vividly documented by ZZ. The plots in figure 5 demonstrate a
high degree of quantitative agreement between the results of ZZ and results generated
using Raptor.

4. Three-dimensional problem set-up
The extension from two-dimensional to three-dimensional treatment in this study

is motivated by two observations: first, that the shock–bubble interaction exhibits
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Figure 6. Schematic representation of initial and boundary conditions. Boundaries are
symmetric (indicated by ‘S’) or outflow (‘O’). The shock wave and free-stream flow move
in the + y-direction.

features that are fundamentally turbulent (see Haas & Sturtevant 1987); and,
secondly, that the behaviour of two-dimensional and three-dimensional turbulence is
fundamentally different, owing to the absence of the vortex-stretching mechanism
in two dimensions (see Pope 2000). Further, the presence of non-axisymmetric
perturbations in the initial bubble geometry has been experimentally observed (see
Klein et al. 2003) to initiate azimuthal vortex-ring instabilities of the type described
for incompressible flows by Widnall, Bliss & Tsai (1974). These significant non-
axisymmetric and turbulent effects arise because of the transport of mass, momentum
and energy in the azimuthal direction, and lead to a late-time flow field characterized
by disorderly motion and well-developed mixing regions, rather than by the well-
defined coherent vortex dipoles and vortex projectiles observed in the two-dimensional
simulations of ZZ.

4.1. Computational mesh

Three-dimensional calculations for the parameter study are set up on a Cartesian mesh
subtending a quadrant of a typical shock tube flow field, including a quarter-spherical
bubble of radius R (figure 6). (The growth of azimuthal mode numbers of less than
four is thus excluded, and the computational effort here is devoted to the behaviour
of shorter-wavelength perturbations.) A coordinate system is defined whose y-axis is
coincident with the shock-tube long axis in the direction of shock-wave motion, and
whose x- and z-axes run in the transverse directions. The incident shock wave and
free-stream flow move in the + y-direction. The domain represents a physical space
of dimensions 4R × Ly, × 4R, where 4R = 10.16 cm, and Ly is variable and selected
to be large enough to accommodate the motion of the shocked bubble through the
times of interest. An alternate coordinate system can be used to describe this space
by defining an (x, z)-plane radial coordinate r =(x, 0, z) and an azimuthal unit vector
θ̂ = ŷ × r/|r|.

In the present computations, the base grid resolution is 32 × Ny × 32, where
Ny = Ly/∆c and ∆c is the (uniform) coarse-grid cell size. Two levels of AMR are
superposed on the coarse grid, with a refinement ratio of 4 each. This gives a mesh
resolution on the finest AMR level of ∆f = 198 µm, which effectively corresponds to
R128. AMR settings are chosen to require maximum refinement in all regions having
a non-zero bubble fluid volume fraction, and near any strong density gradients.
Thus, the entire bubble region is captured with maximum resolution and accuracy,
and the primary shock wave is captured at maximum resolution and accuracy from
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M c ρ

Gas (gmol−1) γ (m s−1) (kg m3)

He 4.003 1.667 1007.2 0.167
N2 28.013 1.399 348.8 1.165
Air 28.967 1.399 343.0 1.205
Ar 39.948 1.670 319.1 1.661
Kr 83.804 1.672 220.5 3.485
R12 120.91 1.143 151.8 5.028

Table 2. Initial properties of fluids present in the current calculations. The initial pressure
and temperature in the system are 1.013 × 105 Pa and 300 K, respectively.

the initialization of the problem until refinement of density gradients is turned off
after the shock wave has moved to a distance of at least 7R downstream from the
bubble. In many cases, however, density-gradient refinement is enforced for twice that
duration or more, to allow for replanarization of the shock front, particularly at high
M and high A. Refinement of non-zero bubble fluid concentrations remains active
throughout the entire calculation.

4.2. Boundary conditions

Symmetry boundary conditions are imposed on the two interior bounding surfaces
parallel to the free-stream flow (−x̂ and −ẑ), indicated by ‘S’ in figure 6. For a
surface defined by outward normal vector n̂, and velocity components parallel and
perpendicular to the surface, V|| and V⊥ respectively, the symmetry condition requires
V⊥ = 0, ∂V||/∂n̂ = 0, ∂ρ/∂n̂ =0 and ∂ρE/∂n̂ = 0. Outflow conditions are enforced on
the four other bounding surfaces: two exterior surfaces parallel to the free-stream flow
(+ x̂ and + ẑ), and two bounding surfaces normal to the mean flow (− ŷ and + ŷ),
denoted by ‘O’ in figure 6. The outflow condition applies a zeroth-order extrapolation
to the boundary: i.e. the outermost plane of data is copied into the boundary, so that
gradients across the boundary are zero. Shock reflections are then minimized, though
not eliminated completely for flows with strong shock waves. Contamination of the
solution by reflections in these cases is prevented by using adaptive gridding to keep
the boundary as far from the region of interest as possible.

4.3. Initial condition and fluid properties

In the initial condition, a planar shock wave approaches a quarter-spherical bubble
of a specified test gas, with radius R =2.54 cm, as shown in figure 6. The bubble
interior gas (fluid 2) and unshocked ambient gas (fluid 1) are initialized at a pressure
p1 = p2 = 101.3 kPa and a temperature of T1 = T2 = 293 K. The bubble and unshocked
ambient gas are initially assumed to be at rest and in thermal and mechanical
equilibrium, and any initial buoyant motion of the bubble is neglected here. The ratio
of specific heats γ for each gas is obtained from JANAF data (see Gordon & McBride
1976), using the initial, unshocked pressure and temperature. Each fluid defined in
the initial condition retains this fixed value of γ throughout the entire calculation.
The bubble interior gases used in this study include helium, argon, krypton and
dichlorodifluoromethane (refrigerant gas freon-12; hereinafter referred to as R12);
the ambient gases used are air and nitrogen. (Nitrogen is used as the ambient gas in
three scenarios in order to coincide with Ranjan et al. 2005.) The fixed fluid properties
and initial densities and sound speeds for all of the gases used in the present parameter
study can be found in table 2. Post-shock properties of the ambient gases used in
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the initialization are computed using the laws of one-dimensional gasdynamics (see
Liepmann & Roshko 1957).

4.4. Ill-posed phenomena and interface smoothing

Using these initial data, then, the hyperbolic system of (2.1) is solved numerically as an
initial-value problem. Samtaney & Pullin (1996) have thoroughly examined the issue
of convergence for solutions of the compressible Euler equations, and shown that
such calculations exhibit many ill-posed phenomena, the most significant of which is
non-convergence of the solution at fixed time, with respect to the spatial-temporal
resolution. This is a significant issue in the Eulerian calculations for shock-accelerated
inhomogeneous flows, particularly in the absence of surface tension on fluid interfaces,
and on rectangular grids. The solution does not always vary continuously with the
initial data: interface features associated with projection onto a rectangular grid
introduce grid-dependent features to shock refraction and vortex formation patterns,
as discussed in § 3.1. The problem studied here may therefore be considered ill-
posed, and in this sense, some small-scale features of the simulated flow fields may be
suspect. However, the Eulerian AMR calculations discussed here represent the optimal
computational effort for which solutions at this local resolution can be obtained in
the context of a parameter study.

The effects of ill-posed phenomena in the results are minimized here by smoothing
the initial bubble surface while maintaining its large density gradient. A subgrid VOF
technique (mentioned in § 3.1) is used to ensure that the interfacial transition layer
has a small but finite thickness. In this technique, each cell spanning the surface
(x2 + (y − yc)

2 + z2)1/2 = R is first divided uniformly into 1000 subcells (ten in each
direction), where yc is the y-coordinate of the bubble centre. Each subcell is regarded
as interior to the bubble if the bubble radius R exceeds the distance of the subcell
centre to the bubble centre. The appropriate bubble fluid volume fraction for the
parent cell is then determined by the number of interior subcells it subtends. This
suppresses the appearance of corners on the bubble surface and produces a smoothed
initial interface, with a maximum interfacial layer thickness of two grid cells, or R/64.
Therefore, the effective perturbation on the initial bubble interface due to the grid
has an amplitude of the order of ∆f /10 (19.8 µm, thus subgrid), and a wavelength of
the order of ∆f (198 µm).

5. Visualized flow fields
With this computational set-up, simulations are carried out for each of the 14

scenarios outlined in § 1 and table 1, using the Raptor code described in § 2. Data
files are generated and stored after every fifth coarse-grid time step. The solution
in each case is carried out to about τ = 25 (roughly 550 coarse-grid time steps, for
these simulations), where τ is a dimensionless time scale based on, for each scenario,
the greater of two speeds: the incident shock-wave speed Wi , or the speed of the
transmitted shock wave Wt , computed from one-dimensional gasdynamics. Thus, for
A< 0, the transmitted shock wave is the fastest-moving shock wave in the system,
and the dimensionless time scale τ is given by τ = tWt/R. This time scale can be
computed in general as τ = tW ∗/R, where

W ∗ =

{
Wi, A � 0,

Wt, A < 0.
(5.1)
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Under this time-scaling, in the absence of shock diffraction, the moment of shock
passage (arrival of the first shock wave at the downstream bubble pole) corresponds
to τ = 2 for all scenarios. At shock passage, the initial stage of baroclinic vorticity
deposition ceases, and opposite-signed vorticity appears as reflected shock and
rarefaction waves transit the bubble.

Figures 7 to 10 show the development of the shocked bubble to τ =25, for four
scenarios from the present simulations. In these representative plots, a slice is taken
through the three-dimensional data at an angle of θ = π/6 to the x = 0 plane. The
total density ρ and vorticity magnitude ω = ω · θ̂ on the slice are plotted, where
θ̂ = ŷ × r̂ =(cos(θ), 0, − sin(θ)), and θ̂ is directed normally out of the page on the top,
and into the page on the bottom. The scenarios are arranged in figures 7 to 10 in order
of increasing Atwood number. Individual frames are labelled by the dimensionless
time τ , as given in the figure captions. These scenarios are also depicted in four
movies available with the online version of the paper.

In these simulations, we consider the shock–bubble interaction within an idealized
shock-tube environment. Thus, the incident shock wave is assumed to have
negligible curvature, thickness and pressure decay, and the effects of radiation,
conduction, phase changes, ionization, electric and magnetic fields and chemical
and nuclear reactions (which are significant in many environments where shock–
bubble interactions take place) are all neglected. The physical mechanisms that
remain are purely hydrodynamic, and are dominated by three nonlinearly coupled,
simultaneous processes: (i) shock-induced compression and heating; (ii) nonlinear-
acoustic phenomena; and (iii) vorticity production and transport. The first of these
can be clearly understood in terms of the Rankine–Hugoniot conditions, which
characterize irreversible changes across surfaces of discontinuity in a gas. The second
and third types of process are much more difficult to characterize, because they involve
the highly nonlinear effects of the curved density interface at the bubble surface. This
curvature leads to the ‘scattering’ of the incident shock wave into reflected, refracted,
diffracted and transmitted waves (see Haas & Sturtevant 1987), collectively referred
to as ‘nonlinear-acoustic effects’. It also leads to the creation of a field of strong
coupled vortices in the flow as the incident and scattered shock waves interact with
the deforming density interface, via the baroclinic mechanism of (3.1). These two
types of process are clearly visualized in figures 7 to 10, and described below.

5.1. Shock refraction, reflection and diffraction

Let us examine the scattered wave patterns seen in figures 7 to 10. The variety of
refraction, reflection and diffraction patterns indicates the breadth of this parameter
space. In the air–helium (A = −0.757) scenario shown in figure 7, it is apparent that
the interaction has reached the irregular refraction stage by τ = 1.4. Because of the
very large negative Atwood number and the increase in sound speed across the bubble
surface, the transmitted shock wave, indicated in figure 7(a), has distinctly convex
curvature. Further, because of the small critical angle at this A, a precursor shock
wave and Mach stem form outside the bubble, while the transmitted shock wave runs
far ahead of the incident shock (figure 7a) inside the bubble. The bubble thus acts as
a strongly divergent lens, refracting the shock front away from the axis.

In the nitrogen–argon (A = 0.176) scenario shown in figure 8, the refractive effect
is very weak, owing to small A (see table 1). Thus, the transmitted shock wave has
only very subtle concave curvature, even at M = 3.38 (figure 8a). In the air–krypton
and air–R12 cases in figures 9 and 10, however, the refractive effect is quite strong.
The formation of a collapsing shock cavity of the type described by ZZ is clearly
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Figure 7. Density (bottom) and vorticity magnitude (top) on the θ = π/6 plane for the
M =1.68 air–He scenario (A = −0.757): (a) τ = 1.4, (b) τ =2.6, (c) τ = 5.2, (d ) τ = 9.9,
(e) τ = 15.0, (f ) τ =24.9. The density colour palette is shown at the bottom, and vorticity
is plotted on a symmetric colour palette centred on white, shown at the top. Note that
τ = tWt/R here. Incident shock wave propagation is left-to-right.
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Figure 8. As figure 7, but for the M = 3.38 N2–Ar scenario (A= 0.176): (a) τ = 1.6,
(b) τ = 2.6, (c) τ = 5.0, (d ) τ = 10.0, (e) τ = 15.0, (f ) τ = 24.9. Note that τ = tWi/R here.

resolved in the simulations (figure 10b), as the transmitted shock front becomes
strongly concave and undergoes shock focusing. The bubble, in these cases, acts as a
strongly convergent lens, refracting the shock wave toward the axis.

Diffracted shock waves become particularly important in the strongly convergent
cases. Diffracted shock waves, shown schematically in figure 1(c–d), are the portions
of the incident shock wave which are distorted as they sweep around the periphery
of the bubble, without encountering the density interface directly. Unlike the weakly
convergent nitrogen–argon scenario, in the strongly convergent cases (air–krypton and
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Figure 9. As figure 7, but for the M = 1.68 air–Kr scenario (A = 0.486): (a) τ = 1.6,
(b) τ =2.6, (c) τ = 5.0, (d ) τ = 10.2, (e) τ = 14.9, (f ) τ =25.0. Note that τ = tWi/R here.
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Figure 10. As figure 7, but for the M = 5.0 air–R12 scenario (A =0.613): (a) τ = 1.5,
(b) τ =2.5, (c) τ = 5.0, (d ) τ = 10.1, (e) τ = 15.0, (f ) τ =25.0. Note that τ = tWi/R here.

air–R12), the diffracted shock wave remains nearly normal to the bubble surface at the
point where it contacts the interface, while sweeping around from the equator to the
downstream pole, where focusing occurs. This ‘near-normality’ behaviour, observed
in simulations by Samtaney & Zabusky (1994), dramatically changes the shape of
the primary shock front as it moves downstream from the vicinity of the bubble,
and effectively slows the progress of vorticity deposition, as the diffracted shock wave
must travel a distance equal to (1 + π/2)R to reach the downstream pole, rather than
just 2R. Thus, the diffracted shock waves do not reconverge on the downstream pole
until approximately τ ≈ 2.57, rather than 2.0, as shown in figures 9(b) and 10(b), and
in the corresponding movies.
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Further, because the diffracted shock waves maintain normality to the bubble
surface, shock waves diffracted around opposing limbs of the bubble collide with each
other when they reach the downstream pole (figure 1d). Shock focusing produces
an intense pressure jump and initiates additional periods of baroclinic vorticity
deposition as the resulting shock waves subsequently traverse the bubble in the
lateral and upstream directions. Shock waves moving laterally across the bubble after
such a collision are visible as curved light-blue fronts moving across a darker blue
background in figure 10(c,d ) and in the movie linked to figure 10. The effects of these
secondary shocks, such as dramatic changes in the bulk density of the bubble, are
known to be present as late as τ = 12 (see § 6.1 and figure 18).

Another noticeable result of the intense nonlinear acoustic effects in the high-A
shock–bubble interaction is the formation of a Winkler-Group vortex, as described in
§ 1.1, following just behind the shock wave after re-transmission into the ambient gas,
seen in figures 9(c) and 10(c) (see Winkler et al. 1987). This opposite-signed vortex
ring is also responsible for the prominent black streak seen in figure 5(a), running
ahead of the shocked-bubble region.

In all of the heavy-bubble cases (A> 0), reflected and/or diffracted (‘secondary’)
waves reverberate through the bubble after τ = 2. This is due to the nature of nonlinear
acoustic effects in A> 0 scenarios: shock waves leaving the bubble must introduce
reflected rarefaction waves in the bubble gas, while, simultaneously, diffraction and
focusing processes introduce secondary shock waves into the bubble region. Thus,
even in the weakly convergent nitrogen–argon scenario, a rarefaction and shock
wave successively pass through the bubble moving upstream after τ = 2, visible as a
shock-bounded yellow region in figure 8(b) and in the corresponding movie. These
are generated by the interaction of the transmitted shock wave with the downstream
interface, and by convergence of the diffracted shock waves. In the M = 3.38 and
M = 2.88 scenarios, this results in a very small secondary upstream jet and vortex ring,
visible at τ � 10 in figure 8(d–f ), though the effect is suppressed in the M = 1.33 case.
This secondary upstream-directed wave may be partially responsible for secondary
jets and vortices observed experimentally by Ranjan et al. (2005), though the effect
may be magnified by the presence of soap-film material in shock-tube experiments.

It is also worth noting that inward-directed rarefactions typically do not arise in the
light-bubble (convergent) cases unless the Mach number is sufficiently high; only the
outward-directed spherical rarefaction wave appears, generated by the initial impact
of the incident shock wave on the upstream bubble surface. Thus, the bulk density of
the bubble fluid may decrease after initial shock passage in heavy-bubble (convergent)
cases, but not in most light-bubble scenarios. (This is shown quantitatively in § 6.1.)

5.2. Vorticity production and bubble deformation

This complex field of shock waves and rarefaction waves produces an equally complex
vorticity field and interface-deformation pattern in the bubble region. One of the most
dramatic ways in which the bubble deforms is by the formation of prominent axial
jets. An axial jet of some form arises in all of the heavy-bubble cases, except the
nitrogen–argon, M =1.33 case. In the other nitrogen–argon scenarios, a very weak
upstream jet forms at very late times on the upstream bubble pole owing to reflections.
The air–kryton and air–R12 scenarios show both upstream and downstream jetting,
owing to shock focusing and strong reflections, with a particularly strong downstream
jet forming in the air–R12, M =1.14 case owing to shock focusing. Upstream jetting
in the air–kryton, M = 1.5 scenario is also seen in the experiments and simulations of
Layes & LeMétayer (2007). In the high-M air–krypton and air–R12 scenarios here,
downstream jets are suppressed by the rapid formation of a large primary vortex
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ring, and upstream jetting is more prevalent, visible particularly in figure 9(d–f ) and
in the corresponding movie.

In every case in the parameter study, a distinguishable vortex ring core forms in
the flow by τ =15, or much sooner in some cases. This is the expected behaviour,
according to the standard description based on baroclinic vorticity deposition. In
some cases, particularly nitrogen–argon, M = 2.88, 3.38, this vortex core is the only
significant feature in the vorticity field at late times. This is true, for the nitrogen–
argon cases in particular, because the relative compressibilities of the ambient and
bubble gases result in a decrease of the Atwood number during shock passage. As
can be seen in figure 8(c–f ), the post-shock density contrast between bubble and
ambient gases at M = 3.38 is very small, and this results in little additional vorticity
generation after the passage of the initial shock. In most of the other scenarios,
however, where the density contrast is increased by shock passage, the vorticity field
continues to increase in complexity at intermediate and late times, owing to a number
of effects, including the growth of Kelvin–Helmholtz instabilities on the interface
and the action of the vortex-accelerated vorticity deposition mechanism described by
Peng, Zabusky & Zhang (2003). Further, the intensity of the vortices can also grow,
owing to the passage of secondary shock waves and rarefactions described in § 5.1.
(This is examined quantitatively in § 6.3.)

In fact, in many cases, the vortical growth after initial shock passage is more
dramatic and complex than the growth initiated directly by the primary incident
shock wave; this is evident particularly in the movies linked to figures 9 and 10.
In this sense, the shock–bubble interaction at high A is analogous to Richtmyer–
Meshkov growth after reshock (see Collins & Jacobs 2002; Latini, Schilling & Don
2006), since secondary shock waves interacting with the deformed interface greatly
complicate the evolution of the interface and the vorticity field.

In the high-Mach-number air–R12 cases, the vorticity field becomes so complex
that the primary vortex core becomes almost indistinguishable at late times, owing to
the combined intensity of the effects described above (see figure 10f ), and owing to
the azimuthal transport of vorticity. The vigorous secondary vorticity generation and
transport eventually leads to the development of an amorphous distribution of intense
and disorderly vortical perturbations, with characteristics that we speculate might be
best described loosely as ‘chaotic’ or ‘turbulent’. Associated with the intense field of
vortical fluctuations and disorderly motion is a region of intense mixing. The shocked
bubble is effectively reduced to a small core of compressed fluid, trailing behind a
complex plume-like structure exhibiting well-developed mixing. These results indicate
a much more amorphous and chaotic flow field at late times than is seen in the results
from two-dimensional simulations shown in figure 14 of ZZ, or in the results for the
M = 2.5 two-dimensional test problem shown here in figure 4. The two-dimensional
simulations show a late-time flow field dominated by large distinct vortex rings and
vortex projectiles, while the three-dimensional simulations capture the complex and
often disordered morphology of a turbulent flow field resulting from the transport of
mass, momentum and energy in all three spatial dimensions.

6. Integral diagnostics
In order to evaluate the performance of several types of analytical models and

scaling laws across the parameter space of the present study, and to deepen the
understanding of the phenomena described above, four integral diagnostics are applied
to the data generated in these 14 scenarios. These include diagnostics for the total
volumetric bubble compression, the mean bubble streamwise velocity, the velocity
circulation and its positive and negative components, and the extent of mixing.
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6.1. Bulk volumetric compression

The response of the bubble to the compressive effects of interaction with the initial
shock wave and the subsequent scattered shock and rarefaction waves is characterized
by tracking the mean density of the bubble fluid. Giordano & Burtschell (2006) have
proposed a simple model based completely on one-dimensional gasdynamics, which,
in many cases, can predict the final mean density of the bubble fluid at late times
after shock passage, with good accuracy. In their model, the passage of a shock wave
across the bubble is modelled using the known evolution of gas properties during the
passage of a shock wave across a discrete slab inhomogeneity in a gas medium. At
each encounter between the shock wave and an interface, properties of the resulting
transmitted and reflected waves are computed from the initial conditions by iteratively
solving a system of equations derived from one-dimensional gasdynamics. By tracking
the density changes in the slab through the passage of a sufficient number of these
transmitted and reflected waves, we arrive at a ‘final’ bulk density for the slab. Such
a methodology can be appropriate only until a rarefaction wave has passed through
the slab, at which point the dimension of the slab and the thickness of the rarefaction
wave dictate subsequent behaviour. In the heavy-bubble configuration, a reflected
rarefaction wave is produced when the shock interacts with the downstream interface,
and, consequently, only the first two shock reflection/transmission events may be
tracked. However, in the light-bubble configuration, only shock waves are reflected
back into the slab, and any desired number of events may be tracked.

In this one-dimensional model, a final density ρ ′′
2 is computed after the transit of

two waves: (i) the initial transmitted shock wave and (ii) the internally reflected shock
wave or rarefaction wave. Giordano & Burtschell (2006) have compared experimental
and computational results to this model by regarding ρ ′′

2 as the final average density
of bubble fluid and invoking conservation of mass, so that Vf /V0 = ρ2/ρ

′′
2 , where

ρ2 is the (unshocked) density at which the bubble fluid is initialized, Vf is the final
or asymptotic bubble fluid volume, and V0 is the initial unshocked bubble volume.
The resulting ratios of final to initial volume Vf /V0 were then compared to volume
ratios obtained from both two-dimensional axisymmetric simulations and shock-
tube experiments, for one air–helium case and one air–krypton case. The volume they
measured from simulations is a ‘species volume’, or a weighted sum of partial volumes
in each cell, written in integral form as

V∗(t) =

∫
D

f (x, y, z, t) dV, (6.1)

where V∗(t) is the total weighted volume of the bubble fluid, f (x, y, z, t) is the
local volume fraction of bubble fluid, and D is the entire computational domain. By
measuring the weighted volume rather than the total volume of the f > 0 region,
the effects of compressibility are not conflated with the effects of mixing. The
computational results shown by Giordano & Burtschell (2006) indicate that the
total weighted volume is abruptly driven downward during initial shock passage,
then, for heavy-bubble cases, oscillates briefly as secondary reflected and diffracted
shock waves pass over the bubble and, finally, approaches an asymptotic value near
to that predicted by the one-dimensional model.

In order to compare our computational results to the one-dimensional model,
measured values of V∗(t) from simulations (obtained by evaluating the integral
in (6.1)) are first recast as measured values of the ‘compression ratio’ C, using
C(t) ≡ V0/V∗(t). For ease of comparison among scenarios with differing M and A,



Parameter study for the shock–bubble interaction 105

0 5 10 15 20 25
0

0.5

1.0

1.5

C~(t)

M = 1.2
M = 1.5
M = 1.68
M = 3

M = 1.2
M = 1.5
M = 1.68
M = 3

M = 1.14
M = 2.5
M = 5

M = 1.33
M = 2.88
M = 3.38

(a) (b)

tW*/R tW*/R

(c) (d )

0 5 10 15 20 25
0

0.5

1.0

1.5

0 5 10 15 20 25
0

0.5

1.0

1.5

C~(t)

0 5 10 15 20 25
0

0.5

1.0

1.5

Figure 11. Plots over dimensionless time of the shocked-bubble compression factor obtained
from three-dimensional simulations, normalized to the compression factor obtained from the
one-dimensional gasdynamics model of Giordano & Burtschell (2006), using (6.2): (a) air–He,
A = −0.757; (b) N2–Ar, A = 0.176; (c) air–Kr, A = 0.486; and (d ) air–R12, A = 0.613.

the values C(t) are then normalized to the one-dimensional model as

C̃(t) =
C(t) − 1

C ′′
2 − 1

, (6.2)

where

C ′′
2 =

V0

V1D
f

=
ρ ′′

2

ρ2

. (6.3)

Under this normalization, C̃(0) = 0 by definition, and C̃ = 1 represents the one-
dimensional-gasdynamics limit. Thus, for a successful model prediction, C̃(t) → 1
as t → ∞. The normalized compression ratio can be expressed in terms of densities
as

C̃(t) =
〈ρ(t)〉 − ρ2

ρ ′′
2 − ρ2

, (6.4)

where 〈ρ(t)〉 represents the volume-averaged partial density of bubble fluid.
The time-dependent compression ratio for bubble fluid, C̃(t), is plotted with this

one-dimensional-gasdynamics normalization on the dimensionless time scale tW ∗/R
for all 14 scenarios in figure 11. In these plots, the compression history of the
shocked bubble collapses nearly to a single trend within each gas pairing, except



106 J. H. J. Niederhaus and others

for the unusual behaviour in the air–helium, M = 3 scenario. For the heavy-bubble
scenarios (figure 11b–d ), the compression ratio of the bubble fluid oscillates about
the one-dimensional-gasdynamics limit for a short time after initial shock passage, as
secondary shock waves and rarefaction waves reverberate through the bubble region.
The compression ratio initially increases owing to the transit of the primary shock
wave, then decreases as a reflected expansion wave moves across the bubble, then
increases owing to shock focusing. Oscillations continue as shock waves introduce
compression phases, and rarefaction waves introduce decompression phases.

The strength and duration of these oscillations in the heavy-bubble scenarios
increase more strongly with A than with M . This is because the strength of secondary
shock waves and the complexity of the refraction pattern drastically increase as
the refractive power of the bubble increases. As the intensity of secondary shock
waves grows, the length of time ts during which C̃ continues to oscillate about unity
also increases. For the nitrogen–argon cases, this time is only roughly ts = 5R/W ∗,
whereas in the air–krypton and air–R12 cases, it increases to 11R/W ∗ and 15R/W ∗,
respectively.

No such oscillations are apparent in the light-bubble scenarios, for M < 3
(figure 11a). In these scenarios, the compression factor for bubble gas increases
nearly monotonically. This is a manifestation of the absence of rarefaction waves
from the bubble gas during the transit of primary and secondary waves. In the light-
bubble cases, all internally reflected waves are shock waves, and no decompression
phases are observed in the compression trends. This is not the case in the M = 3
scenario, however. The compression factor suddenly drops shortly after the initial
transient. This indicates that at high Mach number, intensified nonlinear-acoustic
effects give rise to waves in the air–helium scenarios that are not present for M < 2,
which allow the bubble gas to expand. This also suggests that the upstream, trailing
helium lobes or ‘rings’ which persist to late time for M < 1.3 (see Layes et al. 2005),
but are diminished dramatically for M ≈ 3 (see Ranjan et al. 2007), play a significant
role in the coupling of the bubble gas bulk compression to the transit of the primary
shock wave and the field of secondary waves.

The collapse of these data to a nearly self-similar trend is particularly remarkable
in the nitrogen–argon and air–krypton cases (figure 11b, c). For these scenarios, the
Giordano–Burtschell model prediction is accurate to within less than 7% for late
times (tW ∗/R > 10), across a very broad interval in M . The bubble mean density thus
appears to equilibrate to a value near that predicted by the one-dimensional theory,
suggesting that refractive effects are significant only during the initial transient phase
for these cases. For the two gas pairs with highest magnitude of A, however, i.e.
air–helium and air–R12 (figure 11a, d), the model is less accurate, and its accuracy
deteriorates with increased Mach number.

Although the time scale shown here is based on W ∗, a number of other time scales
were tested, but none showed the collapse seen in figure 11, where oscillations in C̃

for A> 0 are in phase within each gas pairing. However, it is clear that with this time
scaling, oscillations in C̃ have differing periods at different Atwood numbers, since
secondary shock waves acting on the bubble fluid density have speeds that depend
not only on M but also on A. This dependence is highly nonlinear, since a small
change in A can introduce a significant change in the shock refraction, reflection and
diffraction pattern. The problem thus has a fundamentally different character at each
value of A. For fixed A, however, figure 11 shows that the time scales for bubble fluid
compression are set by shock-wave speeds, and the Mach number can thus be scaled
out, particularly for the initial transient phase.
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Figure 12. Plots over dimensionless time of the shocked-bubble mean velocity 〈v〉 obtained
from three-dimensional simulations. Velocities are normalized to the y-velocity V ′′ obtained
from a one-dimensional gasdynamics analysis similar to that of Giordano & Burtschell
(2006): (a) air–He, A = −0.757; (b) N2–Ar, A = 0.176; (c) air–Kr, A= 0.486; and (d ) air–R12,
A = 0.613. Line segments at the right-hand margin indicate the ratio V ′/V ′′.

6.2. Mean bubble fluid velocity

The approach of Giordano & Burtschell (2006), based on one-dimensional
gasdynamics, can also be used to predict other integral properties of the bubble
gas after the transit of the primary shock wave and the series of secondary waves.
The same analysis can be used to obtain, first, the streamwise velocity V ′ in the
slab inhomogeneity after the passage of the initial transmitted shock and, secondly,
the streamwise velocity V ′′ in the inhomogeneity after the passage of the internally
reflected wave. Comparison of these modelled velocities to the volume-averaged
bubble y-velocity 〈v(t)〉 obtained from the present simulations shows that the bubble
velocity at late time is bounded by V ′ and V ′′.

The mean bubble y-velocity is computed from simulations as

〈v(t)〉 =
3

πR3ρ2

∫
D

ρbf v dV, (6.5)

where ρb is the local partial density of bubble fluid, f is the bubble fluid volume
fraction, v is the local y-velocity and πR3ρ2/3 is the total mass of the quarter-spherical
bubble. Mean bubble velocities obtained using (6.5) are normalized as 〈v(t)〉/V ′′ and
plotted on a dimensionless time scale for each scenario in figure 12. Also indicated on
each plot at the right-hand margin is the ratio V ′/V ′′, which varies only slightly with
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Figure 13. Schematic diagram of the heavy-bubble shock–bubble interaction for t < 2R/Wt ,
showing notation used in computing and modelling the circulation in the flow. Incident shock
wave propagation is left-to-right.

M for fixed A. Note that for light-bubble scenarios, V ′′ <V ′, because the internally
reflected wave is a shock wave; however, for heavy-bubble scenarios, the internal
reflection is an rarefaction wave, so V ′′ >V ′.

The dimensionless time scale chosen for the plots of the mean bubble velocity
in figure 12 is tWt/R. The time scale is thus based on the transmitted wave speed,
rather than Wi or W ∗; this time scale yields the best collapse of the velocity data
during the initial transient (tWt/R < 2). This confirms that time scales for bubble fluid
acceleration during shock transit are set by the transmitted shock-wave speed. At late
times, the bubble fluid mean velocity equilibrates to a value bounded by V ′ and V ′′.
In all heavy-bubble scenarios, we observe that V ′/V ′′ < 〈v(t)〉 < 1 for t → ∞. In the
light-bubble cases, 1 < 〈v(t)〉 < V ′/V ′′ for t → ∞. Thus, the one-dimensional analysis
yields a useful tool for predicting the final bubble fluid velocity.

6.3. Circulation

Another method by which the shock–bubble interaction has commonly been
understood and modelled is by means of measuring the circulation – that is, the
circulation of the velocity field about a path P enclosing a diametral half-plane in
the flow field. One leg of P lies on the axis of symmetry (the y-axis, here), and the
opposite leg lies on a parallel line outside the region of non-zero vorticity, as shown
in figure 13.

For the path P , the circulation is defined as

Γ =

∮
P

V · ds, (6.6)

which, by Stokes’ theorem, is equivalent to the area integral of vorticity:

Γ =

∫
S

ω · dA, (6.7)



Parameter study for the shock–bubble interaction 109

where S is the area bounded by P . Thus, the circulation, here, quantifies the net
strength of the vortex rings generated by the shock-bubble interaction. For this
reason, it has been the subject of a number of analytical models with various
conceptual bases. Four models are considered here and compared to the results of the
present calculations, including the formulations of Picone & Boris (1988) (hereinafter
referred to as PB), Yang et al. (1994) (hereinafter, YKZ), Samtaney & Zabusky (1994)
(hereinafter, SZ) and a new model proposed as part of the present study.

Each of these models predicts the total circulation present in the flow at the instant
of shock passage. This is the moment at which the fastest shock wave in the system
reaches the downstream pole of the bubble and reflected waves are generated. For the
air–helium scenarios, this instant corresponds to tWt/R = 2.0. For the nitrogen–argon
cases, it is given by tWi/R =2.0. However, in the air–krypton and air–R12 cases, the
instant of first shock passage is delayed owing to the curvature of the diffracted shock.
That is, because of the large refractive power of the bubble (large A) in these cases,
the portion of the shock front in contact with the bubble surface remains normal to
the interface after it has moved downstream of the bubble equator. Defining φ to be
the angle between the plane of the unperturbed shock front and the tangent plane
to the bubble surface at the point of contact with the shock wave, the shock wave
must traverse a distance πR/2 for φ � π/2, rather than merely R, before reaching
the downstream (φ = π) surface of the bubble. Thus, the progress of the shock wave
across a distance 2R is effectively slowed by a factor of 2/(1+ π/2) in these scenarios,
as discussed in § 5.1. Therefore, we construct an ‘effective’ shock wave speed W̃ for
time scaling, to account for this effect:

W̃ =

⎧⎨
⎩

Wt, A < 0,

Wi, 0 � A � 0.2,

2Wi/(1 + π/2), A> 0.2.

(6.8)

The circulation at the instant of first shock passage is then defined as

Γ̂ = Γ |t=2R/W̃ , (6.9)

and corresponds to the circulation at the ‘end of phase (iii)’, in the terminology of
Samtaney & Zabusky (1994). Only a time scale based on W̃ will place the shock-
passage circulation at the same dimensionless time for every scenario.

6.3.1. Circulation models based on integrated baroclinic torque

To obtain the total circulation at shock passage, in the models of PB and YKZ,
the baroclinic source term in the vorticity equation is integrated over the half-plane
and over the time during which the shock wave initially passes over the bubble, with
some simplifying assumptions. The two models assume that both the shape of the
bubble and the density ratio relative to its surroundings do not change significantly
during initial shock passage, and that the shock front proceeds in linear fashion
across the bubble with no changes in its shape or speed. Vorticity production is then
decoupled from shock refraction and diffraction, so that the density gradient and
pressure gradient components of the baroclinic source term can be evaluated using
parameters from the one-dimensional shocked gas slab analogue, such as the incident
shock wave speed Wi , the shocked ambient flow speed u′

1 and the density of the
shocked ambient gas ρ ′

1. Of the scenarios included in the current study, only in the
nitrogen–argon M = 1.33 case are these criteria nearly met. However, the formulae
can be regarded as first-order estimates of the circulation resulting from only the
passage of the initial shock wave, neglecting the higher-order effects associated with
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shock refraction, focusing, diffraction and reflections. The PB model (see Picone et al.
1985; Picone & Boris 1988), in our notation, is given by

ΓPB = 2u′
1

(
1 − u′

1

2Wi

)
R ln

(
ρ1

ρ2

)
, (6.10)

and the YKZ model by

ΓYKZ =
4R

Wi

p′
1 − p1

ρ ′
1

(
ρ2 − ρ1

ρ2 + ρ1

)
. (6.11)

6.3.2. Circulation model motivated by asymptotics

An entirely different approach is taken in the SZ model (see Samtaney & Zabusky
1994; Samtaney, Ray & Zabusky 1998; Zabusky & Zeng 1998), which captures shock
refraction effects by invoking scaling arguments derived from shock polar analysis (see
Henderson 1966, 1989) and from numerical simulations of shock-wave interactions
with planar interfaces across a broad parameter space. An ‘asymptotically motivated’
analysis in Samtaney & Zabusky (1994) yields a general first-order-accurate scaling
law for the rate of circulation deposition per unit unshocked interface length, for
an interface of arbitrary shape. For the fast/slow configuration and unit ambient
unshocked density and pressure (and thus sound speed γ 1/2), their formulation is
given as

dΓ1

ds
=

2γ 1/2

γ + 1

(
1 − χ−1/2

)
sin φ

(
1 + M−1 + 2M−2

)
(M − 1) , (6.12)

where s is a path length along the interface, χ = ρ2/ρ1, φ is the local inclination of
the unshocked interface relative to the unperturbed incident shock front (labelled
in figure 13) and γ is a characteristic ratio of specific heats for the flow, e.g.
γ =(γ2 + γ1)/2.

This formula is an approximation to the exact expression for the circulation
associated with regular refraction of a shock wave at a planar interface, given by
Samtaney & Zabusky (1994) (SZ) as equation (2.11). The scaling law (6.12) possesses
a number of desirable properties. First, the sinφ factor ensures that dΓ/ds has the
same sign and periodicity as ∇ρ × ∇p. Also, the circulation deposition scales linearly
with M for large M , asymptotes to zero for M → 1 and is independent of χ for
large χ . This formula has been used, with success, to predict the circulation on
sinusoidal, circular and elliptical interfaces accelerated by shock waves of various
strengths (see Samtaney & Zabusky 1994; Zabusky & Zeng 1998; Zabusky 1999;
Ray, Samtaney & Zabusky 2000).

The use of this scaling law here, however, is presented with two qualifiers. First,
in this form, it is only applicable for fast/slow refraction scenarios, and thus can
only be applied to heavy-bubble shock–bubble interactions in the present study. An
extension of the theory to the slow/fast configuration, for shocked planar inclined gas
interfaces, has been derived and validated using Eulerian simulations by Samtaney
et al. (1998). (Values computed using this extension, adapted for circular interfaces,
are shown here in table 3.) Secondly, for planar inclined gas interfaces, SZ have
computed the circulation using both the exact expression and the scaling law shown
here (6.12), for a series of inclination angles φ, Mach numbers M and density ratios χ

(plotted in figure 15 of SZ). SZ regard the scaling law as valid only in the parameter
space subregion where the difference between the two is less than 10%, and shock
refraction does not become irregular. Since most of the scenarios considered here fall
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Scenario Γ̂0 ΓPB ΓYKZ ΓSZ ΓSZ3 Γ1D

number Gases M (m2 s−1) (m2 s−1) (m2 s−1) (m2 s−1) (m2 s−1) (m2 s−1)

1 Air–He 1.20 4.98 9.20 5.98 21.05 −6.93 5.47
2 1.50 10.09 18.41 9.84 31.25 11.42 11.53
3 1.68 12.50 22.79 11.04 34.93 24.04 14.50
4 3.00 24.93 48.26 15.25 44.85 77.89 31.24
5 N2–Ar 1.33 −1.95 −2.48 −1.91 −2.16 −1.99 −1.98
6 2.88 −4.25 −8.41 −3.50 −6.79 −5.09 −3.88
7 3.38 −4.68 −10.01 −3.82 −7.96 −5.23 −4.29
8 Air–Kr 1.20 −4.38 −4.93 −3.84 −4.69 −4.08 −5.85
9 1.50 −8.56 −9.88 −6.32 −9.30 −9.12 −9.63

10 1.68 −10.39 −12.23 −7.09 −11.40 −11.45 −11.05
11 3.00 −18.16 −25.90 −9.79 −22.64 −22.19 −18.74
12 Air–R12 1.14 −3.89 −4.93 −3.82 −4.82 −4.05 −5.33
13 2.50 −22.06 −28.32 −11.22 −25.97 −25.43 −21.89
14 5.00 −43.28 −59.75 −17.10 −51.55 −48.95 −43.73

Table 3. Computed and modelled values of primary circulation at the instant of first shock
passage (tW̃ /R = 2) for each of the 14 scenarios and each of the models described in
§ § 6.3.1–6.3.3.

in the region of irregular refraction even at φ = π/3, we proceed with the scaling-law
formulation (6.12) only as a means of estimating the circulation.

To obtain the circulation in the shocked bubble, SZ integrate (6.12) along a half-
circumference of the bubble (from φ =0 to φ = π). (The result is identical for both
spherical and cylindrical bubbles.) The formula is modified for φ > π/2 to account for
diffraction of the shock wave propagating around the bubble interface, by invoking a
‘near-normality’ hypothesis. This takes into account the empirical observation that the
diffracted shock wave maintains its front at 90◦ to the unshocked bubble surface, in
the case of A> 0.2 where shock-wave curvature is significant. Thus, the substitution
sin φ = 1 is made in the second half of the integral, for π/2 < φ � π. In the case
of 0<A< 0.2, we observe that the near-normality hypothesis does not hold, and
this substitution is therefore not made. This yields the following formula for the
circulation:

ΓSZ =

⎧⎪⎪⎨
⎪⎪⎩

(
4

1 + γ

)(
1 − χ−1/2

) (
1 + M−1 + 2M−2

)
(M − 1) Rc1, 0 < A < 0.2,(

1 +
π

2

) (
2

1 + γ

)(
1 − χ−1/2

) (
1 + M−1 + 2M−2

)
(M − 1) Rc1, A � 0.2,

(6.13)
where the dimensionless scaling law (equation (5.15) of SZ) has been multiplied by
the ratio c1/γ

1/2, in order to obtain the circulation in physical units. Zabusky & Zeng
(1998) have used this formula (for A> 0.2) to predict the circulation present in the
shocked bubble flow, simulated using a two-dimensional Godunov code, just after
passage of the initial shock wave, for the air–R12 scenario at M = 1.14, 1.5, 2.5, 5.0. It
should be noted, however, that the formula appearing in ZZ as equation (26) contains
a unnecessary additional factor of γ 1/2, and the intended form is that shown here in
(6.13).

The scaling law (6.12), which is the basis of this formula, is derived by SZ as a
first-order approximation to the circulation per unit length. A third-order-accurate
correction to (6.12) is proposed in Appendix A.2 of SZ. After integrating around
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the bubble and incorporating this third-order extension in the scaling law (following
equation (5.11) of SZ), a third-order-accurate version of the SZ model (hereinafter,
‘SZ3’) is then written as

ΓSZ3 =ΓSZ +
1

γ 1/2

(
2

3
+

π

2

)
Γ ′

3Rc1, (6.14)

where the form of Γ ′
3 is given in Appendix A.2 of SZ. The inclusion of the third-order-

accurate extension introduces a change of more than 10% only in the nitrogen–argon,
M = 2.88, 3.38 and air–krypton, M =1.2 cases, but the results presented in § 6.3.4
generally show better accuracy with respect to computed values when this third-order
correction is included. The values computed using the first-order- and third-order-
accurate formulations are shown here in table 3.

6.3.3. Circulation model based on one-dimensional gasdynamics

We propose a third approach to modelling the circulation, in which the velocity field
at shock passage is reconstructed using one-dimensional gasdynamics parameters and
fits to computational data across the parameter space. The circulation is computed
using line integrals over this reconstructed field. Consider the velocity field V at the
instant of shock passage. The circulation associated with this field can be obtained
by integrating the velocity along a path P identical to that shown enclosing the grey
area in figure 13, except that at shock passage, the points C and D on the path are
advanced downstream to locations near the line y = 2R. Using this path of integration,
the circulation can be computed exactly as

Γ =

∫ B

A

V · ŷ dy +

∫ C

B

V · ŷ dy +

∫ E

D

V · ŷ dy +

∫ F

E

V · ŷ dy, (6.15)

where it is noted that there is no contribution to the integral along the path P from
the line segments CW, WX, XD and YZ; and that the contributions from the line
segments FY and ZA cancel. Let the path of integration be arranged such that the
line segment DF lies in a region where V = u′

1ŷ, and the line segment AC lies on the
axis of symmetry, where V · r̂ = 0. Then the expression in (6.15) becomes

Γ =

∫ B

A

vAB(y) dy +

∫ C

B

vBC(y) dy − u′
1(y3 + y4), (6.16)

where the axial velocities vAB(y) and vBC(y) and the distances y3 and y4 must be
modelled. By solving the one-dimensional gasdynamics equations iteratively for the
transmission of a normal shock wave into a slab of gas whose properties are known,
we may obtain the reflected shock wave strength Mr and speed Wr , the speed of
the transmitted shock wave Wt and the particle speed behind the transmitted shock
wave u′

2. Two-dimensional simulations within the present parameter space suggest,
further, that the on-axis gas velocity in the region between the interface (y = y1) and
the spherical reflected shock wave (y = 0) may be modelled as

vAB(y) = −u′
1 + (u′

1 − u′
2)

( y

R

)2

, (6.17)

where the coordinate system in figure 13 has been chosen such that the origin is fixed
to the on-axis location of the reflected shock wave, and u′

2 is the post-shock velocity in
fluid 2. The y2 term ensures that the reconstructed velocity behind the reflected shock
wave varies nonlinearly in y as we would expect for a spherical expanding wave; this
formulation has been obtained by fits to two-dimensional simulation results.
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If we also substitute u′
2 for vBC in (6.16) (i.e. neglect the on-axis effects of shock

refraction and focusing), and evaluate the remaining line integrals, we obtain an
estimate of the circulation based on the one-dimensional gasdynamics reconstruction,

ΓR = u′
1y1 + 1

3
R(u′

1 − u′
2)

(−y1

R

)3

+ u′
2y2 − u′

1(Wit
∗ + y3), (6.18)

where the lengths of the line segments y1, y2, y3 and y4 are also obtained from
one-dimensional gasdynamics as

y1 =
1√
Mr

(
u′

2 + Wr

)
t∗, y2 = (Wt − u′

2)t
∗, y3 =

Wrt
∗

√
Mr

, y4 = Wit
∗,

t∗ =
2R

W̃
.

⎫⎪⎪⎬
⎪⎪⎭ (6.19)

All velocity quantities are obtained from one-dimensional gasdynamics, and the
segment length reduction factor 1/

√
Mr appearing in (6.19) is a scaling factor which

accounts for the curvature and time-dependent weakening of the reflected spherical
shock wave. It is determined empirically from numerical simulations for the shock–
bubble interaction in a method similar to that by which scaling factors in the model
of Samtaney & Zabusky (1994) were obtained. Although the four terms appearing
in (6.18) all have the same order of magnitude and partially offset each other for the
present scenarios, the fourth term – associated with the on-axis velocity induced by
the incident shock wave – is the dominant term in nearly all of the simulations shown
here. Further, we note that although ΓR → 0 for M → 1, the model has no asymptote
for M → ∞. In this sense, the model should only be regarded as a useful estimate
for the circulation with the parameter space of the present study, since it cannot be
shown to have consistent asymptotic behaviour in the same sense as the SZ model.

6.3.4. Circulation obtained from simulations

To compare the results of the current simulations with these models, a procedure
is defined for measuring the velocity circulation from three-dimensional data. The
circulation is measured as a function of the azimuthal coordinate θ , using a series of
48 sample planes at incremented azimuthal θ-locations,

θk =
k − 1

47

π

2
, k = 1, . . . , 48. (6.20)

For each of the 48 azimuthal locations, a planar slice is taken through the dataset,
defined by normal vector n̂k = θ̂k = (cos(θk), 0, −sin(θk)) and anchored at the origin.
The circulation is computed by evaluating the integral in (6.7) over this slice to obtain
the net circulation Γ0(θk, t). The positive component of the circulation Γ+(θk, t) and
negative component of circulation Γ−(θk, t) are obtained by only including ω > 0 and
ω < 0, respectively, in the integral. For the heavy-bubble scenarios included in this
study, vorticity deposition by the initial shock wave produces ‘negative’ rotation in
the sense that ω = ω · θ̂ < 0, and in the air–helium cases, ‘positive’ rotation (ω · θ̂ > 0) is
produced by the initial shock wave. This we call ‘primary’ circulation, corresponding
to Γ−(θ, t) for the heavy-bubble scenarios (nitrogen–argon, air–krypton and air–R12),
and Γ+(θ, t) for the light-bubble scenarios (air–helium).
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Figure 14. Decomposed circulation Γ∗ versus time, for two air–He scenarios: (a) M = 1.2,
and (b) M =3.0. Vertical bars indicate r.m.s. azimuthal fluctuations Γ̃∗ and a solid vertical line
indicates the time of shock passage, t∗ = 2R/W̃ .
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Figure 15. As for figure 14, but for two N2–Ar scenarios: (a) M = 1.33, and (b) M = 3.38.

Azimuthally averaged values of the positive, negative and net circulation in the
bubble region are obtained as

Γ̄∗(t) =
2

π

∫ π/2

0

Γ∗(θ, t) dθ ≈ 1

48

48∑
k=1

Γ∗(θk, t), (6.21)

where ∗ ∈ {+, −, 0}. Further, root mean square (r.m.s.) fluctuations Γ̃∗(t) with respect
to the azimuthal mean are computed by taking the variance of the 48 θ-samples:

Γ̃∗(t) =
2

π

√∫ π/2

0

[Γ∗(θ, t) − Γ̄∗(t)]2 dθ ≈ 1

48

√√√√ 48∑
k=1

[Γ∗(θk, t) − Γ∗(t)]2. (6.22)

Plots of Γ̄∗(t) are given in figures 14 to 17 for the highest- and lowest-Mach-number
scenarios for each gas pairing included in this study. The time of shock passage,
t∗ ≡ 2R/W̃ is indicated on each plot by a solid vertical line. The r.m.s. azimuthal
fluctuations in circulation, ±Γ̃∗(t), are plotted as error bars on each curve. These error
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Figure 16. As for figure 14, but for two air–Kr scenarios: (a) M = 1.2, and (b) M = 3.0.

0 100 200 300
–200

–100

0

100

t (µs) 
0 1000 2000

–10

–5

5

0

t (µs)

Γ
* (

m
2 

s–1
)

(a) (b)

Γ+

Γ–

Γ0

Γ+

Γ0

Γ–

Figure 17. As for figure 14, but for two air–R12 scenarios: (a) M = 1.13, and (b) M = 5.

bars indicate the magnitude of azimuthal-mode fluctuations in the vortex strength,
suggesting the growth of vortex bending and stretching modes in the vorticity field
generated by the shock–bubble interaction.

The trends in the θ-averaged circulation show the abrupt initial shock-driven
increase in primary and total circulation, followed by a ‘plateau’ in the total circulation.
The initial rise in Γ0 always ends near t = t∗; however, the ‘plateau’ in the total
circulation does not always begin at shock passage, but later in many cases, after a
period characterized by small-amplitude oscillations. Vorticity generation continues
in the positive and negative components at intermediate and late times because of
two effects. First, vortex-accelerated vorticity deposition (VAVD) is significant: strong
vortices deposited in the flow introduce centripetal accelerations which contribute to
further vortical growth. This mechanism is described in detail for Richtmyer–Meshkov
instabilities by Peng et al. (2003), who report that the components of the circulation
continue to grow even at very late times in Richtmyer–Meshkov instabilities. Secondly,
vorticity generation continues owing to the reverberating scattered and diffracted
shock waves and reflected rarefaction waves discussed in § 6.1 and highlighted in figure
11. Such secondary compressions and expansions generate vorticity baroclinically on
the interface as they traverse the deformed bubble, causing the total circulation to
continue to change in time.
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Figure 18. Magnitude of the baroclinic source term ρ−2∇ρ × ∇p (top) and Laplacian of
the total density field |∆ρ| on the θ = π/6 slice plane, for (a) t = 5.0R/W ∗ = 74.1 µs and
(b) t = 8.35R/W ∗ = 123.7 µs in the air–R12, M = 5 scenario. Incident shock wave propagation
is left-to-right.

The significance of these two effects is shown clearly in figure 18, where
the magnitude of the instantaneous baroclinic source term ρ−2∇ρ × ∇p and the
Laplacian of the density field |∆ρ| are plotted on the θ = π/6 slice plane, for
t = 5.0R/W ∗ = 74.1 µs and t =8.35R/W ∗ = 123.7 µs in the air–R12, M = 5 scenario.
A number of secondary shock waves are seen traversing the bubble region, and
regions of continuing positive and negative baroclinic generation are visible. This is
a striking example of secondary vorticity generation after the passage of the initial
shock. After such secondary waves have passed out of the bubble region, indicated
by C̃(t) → 1 in figure 11, the components of the circulation continue to grow, by the
VAVD mechanism of Peng et al. (2003).

The fact that Γ+ and Γ− continue to grow while Γ0 remains constant at these later
times indicates that the spatial distribution of vorticity decays from one dominated
by a few large-scale vortices to one characterized by an increasingly large number of
smaller and smaller vortex dipoles shed from the larger vortices. Such an evolution
of the vorticity field is evident in the vorticity plots in figures 7 to 10, and in the
corresponding movies.

For comparison with the PB, YKZ, SZ3 and one-dimensional gasdynamics-based
circulation models, the circulation at the instant of shock passage is extracted from
these data. The ratios of computed to modelled values of the primary net circulation
at shock passage Γ̂0 are shown in figure 19, and the computed and modelled values
themselves are given in table 3. The data indicate that of the four models, the SZ3
model and our proposed one-dimensional reconstruction (R) model, in general, yield
the best results across the parameter space. The SZ3 model prediction, for A> 0,
has a maximum error of 22 % and an average error of 10 %. The one-dimensional
reconstruction model gives a maximum error of 37 %, and an average error of 10 %
across the entire parameter space, including A< 0. In general, both models tend to
overpredict the circulation slightly, though the agreement between these two models
and the computed values is quite good for A> 0, and between the R model and
the computed values for A< 0. As for the other circulation models, the YKZ model
performs reliably for A< 0.2, including the air–helium and nitrogen–argon scenarios,
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Figure 19. The ratio of modelled circulation to computed circulation at shock passage,

Γmodel/Γ̂ , for each of the 14 scenarios included in this study, and all four circulation
models described above. (i) Air–He, A = −0.757; (ii) N2–Ar, A = 0.176; (iii) air–Kr, A = 0.486;
(iv) air–R12, A = 0.613. See table 3 for scenario number list.

although it exhibits excessive sensitivity to the Mach number for fixed A. The PB
model performs well at high density contrasts, A> 0.2, but overpredicts the circulation
by a factor of approximately two for A< 0, as has been noted in PB and YKZ.

Overall, the results shown in table 3 and figure 19 suggest that a complete, predictive
model for the shocked-bubble circulation does not yet exist. The SZ3 and R models
provide very good estimates in general, but in sporadic cases they strongly over- or
underestimate the values measured from the current simulations, and the SZ3 model
is unreliable for A< 0. Though the R model shows good agreement with computed
values within the parameter space of this study, its asymptotic properties are unknown,
and its consistency can therefore not be guaranteed. Further, the two simpler models,
the PB and YKZ models, which are explicitly stated to be valid only in the case of
weak shock waves and small density ratios, appear to perform well in a number of
cases with a high A magnitude and high M . This analysis has been performed also with
circulation values measured from simulations only in regions with f > 0 (i.e. in the
bubble fluid only), with a similar outcome. However, it is remarkable that, both in the
circulation and the bubble compression and mean velocity metrics, analytical models
for the shock–bubble interaction with close linkages to one-dimensional gasdynamics
have performed well.

6.4. Mixing

Another aspect of shock–bubble interactions which is of great concern in many
environments where shock-accelerated inhomogeneous flows are found is the mixing
of the bubble fluid into the ambient medium. The passage of the initial shock wave
over the bubble, along with all of the subsequent secondary reflected, refracted and
diffracted waves, leaves a complex field of vortex lines distributed throughout the
flow. This vortical field initiates vigorous mixing and the growth of turbulence-
like characteristics in the flow. Although the current simulations do not resolve the
dissipative length scales on which mixing takes place physically, we rely on the MILES
(monotonically integrated large-eddy simulation) approach (see Fureby & Grinstein
2002) to capture the dissipative intermingling of fluids here.

Thus, a fourth integral diagnostic is applied in an attempt to characterize the
intermingling of bubble fluid and ambient fluid observed in these simulations. A
simple and effective means of measuring the extent of this intermingling is to compute
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Figure 20. Time-dependent ‘mixedness’, ζ (t), obtained from three-dimensional simulations
using (6.23), plotted on the dimensionless time scale tu′

1/R: (a) air–He, A = −0.757;
(b) N2–Ar, A = 0.176; (c) air–Kr, A = 0.486; and (d ) air–R12, A = 0.613.

the mean volume fraction of ambient fluid in the bubble–fluid region B , where B

includes all cells with f > 0. As the bubble is deformed by the initial shock wave
and the secondary waves that interact with it, strong velocity shear and other effects
draw ambient fluid into the bubble–fluid region and intermingle the two fluids. Thus,
the volume fraction of fluid 2 increases and the volume fraction of fluid 1 decreases
within the body of region B , and the region B grows in size. We define a ‘mixedness’
quantity ζ which is equivalent to the mean volume fraction of ambient fluid in the
bubble–fluid region:

ζ ≡ 1 −

∫
B

f (x, y, z, t) dV∫
B

dV
. (6.23)

This quantity characterizes the accumulated action of the process, and thus the extent
to which the two fluids may be considered to have mixed.

The time-dependent ‘mixedness’ ζ is computed for the 14 scenarios here, and plotted
in figure 20. Since the mixing behaviour is largely driven by velocity gradients in the
post-shock flow, these trends are plotted on a dimensionless time scale based on u′

1

rather than W ∗. The data plotted in figure 20 on this time scale collapse nearly to
a single self-similar trend for each gas pairing. The mixing behaviour, computed in
this way, is thus shown to depend strongly on the Atwood number, though the Mach
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number may be scaled out. Other time scales, based on shock-wave speeds W̃ or W ∗,
for example, did not produce the collapse seen with the u′

1-based scale for the mixing
data. Thus, it is also apparent that for different quantities measured in shock–bubble
interactions, different time-scaling parameters are appropriate. For the quantity ζ ,
u′

1 is appropriate as a characteristic speed, because the rate of mixing is dependent
directly on the shear rate experienced by the interface, and, thus, on the post-shock
flow speed u′

1. However, as in the compression trends from § 6.1, the collapse is only
successful within each gas pairing, and fails when A is varied. This is due to the
nonlinear dependence of the shock scattering patterns on the initial density contrast.

As for the extent of mixing, we can see from figure 20 that the relative magnitude
of ζ at late times (tu′

1/R > 10) grows consistently with the magnitude of A. For
the nitrogen–argon scenarios, the mean ambient fluid volume fraction in the mixing
region reaches a value of only about 0.6 at late times. In the higher-A cases, ζ reaches
much greater values at late times: 0.8 and higher for the air–krypton cases, and 0.9
or higher for the air–R12 cases. The intensity of mixing in these scenarios is due not
so much to the strength of the shock wave as to the greatly increased complexity and
intensity of scattered shock waves and rarefaction waves at high A. These scattered
waves also introduce non-monotonic deviations to the trends in ζ , particularly for
the air–R12 cases. These are due to the gradient-steepening effects of the transit of
secondary shock waves across the mixing region, which pose further obstacles to the
scaling of mixing behaviour across varying A.

In the two high-M air–R12 scenarios (M = 2.5, 5.0), the intensity of shock refraction
and vorticity generation in the shock–bubble interaction leads to the development of
a large region of highly intense mixing. In this region, which is a long swath trailing
downstream from the main bubble volume, the bubble fluid becomes diluted to
f < 0.1 at very late times. Hansen et al. (2006) describe this behaviour, observed also
in experiments, as a ‘mass-stripping’ process. This behaviour is distinctive for these
two cases, in which, as can be seen in figure 10(e, f ), the bubble is subjected to strongly
focused shock waves and a series of secondary waves, and is ultimately reduced to
a complex plume characterized by a large range of length scales, a complex and
disorderly vorticity field and strong mixing. The volume fraction and vorticity fields
from these two cases at t = 25R/Wi are shown in figure 21, which clearly illustrate
the high level of mixing, and indicate that the flow fields for these scenarios possess
characteristics that can be described in terms of turbulence. We can assume that
similar distinctive, turbulent behaviour will be observed in shock–bubble interactions
when shock strengths and density contrasts are significantly large.

6.5. Departure from axisymmetry

The turbulent and non-axisymmetric features observed in these simulations arise
because of complex shock refraction patterns and vorticity dynamics which strongly
amplify initial small-scale non-axisymmetric features at high Atwood numbers.
The significance of this behaviour – which is captured numerically only in
three-dimensional calculations – can be characterized by measuring the enstrophy
associated with non-axisymmetric components of the vorticity. In a two-dimensional
axisymmetric calculation (such as those shown in § 3), the vorticity can only have
a θ-component. When axisymmetry is relaxed, the vorticity may develop non-
zero components in the y- (axial) and r- (radial) directions. This growth in the
non-axisymmetric (y- and r-) directions is particularly strong and has significant
consequences for the flow-field development when A> 0.2, such that the initial density
contrast is significant enough to develop complex secondary shock waves.
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Figure 21. Vorticity magnitude (upper) and R12 volume fraction (lower) fields for the air–R12
scenario, at t = 25R/Wi , illustrating the turbulence-like flow field generated in the shock–bubble
interaction at late times. (a) M = 2.5, (b) M = 5.0. Incident shock-wave propagation is from
left to right.

The enstrophy associated with each component of the vorticity is therefore measured
here by evaluating the integral

Ωa ≡
∫

B

(ω · â)2 dV, (6.24)

where â ∈ {r̂ , θ̂ , ŷ}. The integral is taken only over the bubble–fluid region. Trends
in Ω are normalized by the value of Ωθ at the first critical point (local maximum),
and plotted as Ω ′ in figure 22. For A= 0.176, as seen in figure 22(a), the departure
from axisymmetry is imperceptible, owing to the weakness of secondary shock and
rarefaction waves generated in this case. From the data shown in figure 22(b) for
A= 0.613, however, it is clear that non-axisymmetric effects are significant in the
later stages of the flow-field development, even though the Mach number is lower
in this case. Although the θ-component dominates at early times during the initial
shock transit, and the r- and y-components are zero at that time, the departure
from axisymmetry grows dramatically during the intermediate and later stages of
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Figure 22. Time-dependent enstrophy associated with axisymmetric (θ -) and non-axisymmet-
ric (r- and y-) components of the vorticity, plotted on a dimensionless time scale based on
the ‘effective’ shock wave speed W̃ : (a) N2–Ar, A =0.176, M = 3.38, (b) air–R12, A = 0.613,
M = 2.5.

the evolution. At late times, the r- and y- components are of the same order
of magnitude as the azimuthal component. This pronounced growth in the non-
axisymmetric components of the vorticity accounts for the qualitative differences
observed between the results of the three-dimensional air–R12 simulations shown in
figures 10 and 21, and the results of the two-dimensional simulations shown in figure 4.
A more complete characterization of these effects for shock–bubble interactions
will require the development and applications of more effective three-dimensional
diagnostics for mean and fluctuating quantities, coherent structures and mechanisms
of transport and decay of turbulent features in flows such as these (see Zhang, Peng &
Zabusky 2005; Niederhaus 2007), which it is anticipated will appear in future studies.

7. Conclusions
From flow-field visualizations derived from these datasets, it can be seen clearly that

within the parameter space studied here, variations between the different scenarios in
the behaviour of a spherical bubble subjected to a planar shock wave are large in
many cases. This is apparent from the density and vorticity fields shown in figures 7 to
10. However, in spite of the apparent dissimilarities, and the strong three-dimensional
and nonlinear effects arising in many cases, it is remarkable that, within each gas
pairing, trends in various integral features of the flow often follow scaling laws based
on one-dimensional gasdynamics analyses. The compression trends, when normalized
using the value obtained by a simple one-dimensional gasdynamics analysis, and
plotted on a time scale based on W ∗, tend to collapse very nearly to a single curve,
particularly in the lower-|A| cases, including nitrogen–argon and air–krypton. At
high M , however, the scaling deteriorates. Trends in the mean bubble–fluid velocity
collapse to a single trend in the initial transient under a time scaling based on Wt ,
and are shown to approach a late-time value that is bounded by the post-shock
velocities computed using one-dimensional gasdynamics. Also, the mixing trends,
plotted against a time scale based on the post-shock ambient flow speed u′

1, tend to
collapse nearly to a single self-similar trend.

Other properties of the shock–bubble interaction cannot yet be modelled to yield
a complete successful scaling across this parameter space. This is the case for the
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circulation. Neither the simpler first-order models of PB and YKZ, nor the more
complex SZ3 and one-dimensional-reconstruction model can predict the circulation
consistently with an accuracy of better than 10%. The model introduced here, based
on one-dimensional gasdynamics, however, yields the best fit to the data across this
parameter space, as shown in figure 19. Successful models and scaling laws are
also lacking for other aspects of the shock–bubble interaction which have not been
discussed here, including in particular the bulk displacement, extent of mixing, and
spatial development.

Perhaps the most remarkable result from these simulations is the complex, well-
mixed plumes that result from the three-dimensional shock–bubble interaction in the
two scenarios with M > 2 and A> 0.5: the air–R12 M = 2.5, 5.0 scenarios. In these two
cases, the combined, accumulated effects of shock refraction, reflection and diffraction
and intense primary and secondary vorticity generation, are so great in magnitude
that the bubble region gives way to a region more appropriately characterized in terms
of turbulence and disordered motion than coherent structures. It is anticipated that
future simulations and post-processing diagnostic schemes, coupled with continued
experimental work, will shed light on the turbulent mechanisms underlying these
features.

This work was partially supported by the US Department of Energy Grant DE-
FG52-06NA26196. This work was also partially performed under the auspices of
the U.S. Department of Energy at the University of California, Lawrence Livermore
National Laboratory under Contract No. W-7405-ENG-48.
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